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ABSTRACT 

Isotropic artificial dissipation is added to the Navier-Stokes equations along with a correction term which 
cancels the artificial dissipation term in the limit when the mesh size is zero. For a finite mesh size, the 
correction term replaces the artificial viscosity terms with hyperviscosity terms, i.e., with an artificial 
dissipation which depends on the fourth derivatives of the velocity. Hyperviscosity more effectively 
suppresses the higher wave number modes and has a smaller effect on the inertial modes of the flow field 
than does artificial viscosity. This scheme is implemented using the finite element method and therefore 
the required amount of dissipation is determined by analysing the discretization on a finite element. The 
scheme is used to simulate the flow in a driven cavity and over a backward facing step and the results are 
compared to existing results for these cases. 
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INTRODUCTION 

Spurious oscillations often occur in numerical solutions of the Navier-Stokes equations which 
for incompressible flow are: 

·V = 0 (1) 

+ V· V = - P + v 2V (2) 

where V is the velocity vector, P is the pressure, p is the density of the fluid, and v, which is 
assumed to be constant, is its kinematic viscosity. In the present work, artificial viscosity terms 
are added to (2) in order to dampen the spurious oscillations. In addition, in order to decrease 
the numerical error, a correction term is added so that in the limit when the mesh size is zero 
it cancels the artificial viscosity terms. This correction term is discussed later. The finite element 
method is used to implement the above idea. 

Determining the amount of artificial viscosity is of crucial importance to the effectiveness of 
the numerical scheme. This is done by examining the discrete version of (2) on a triangular 
element with an internal node. The amount of artificial viscosity is now determined by requiring 
that in the discrete equations, the velocity components at the internal node are some weighted 
average of the velocity components of its neighbour nodes. This requirement was previously used 
by Patankar1 and its implementation here is discussed in detail in later sections. 

The present scheme is used to simulate the flow in a driven cavity and over a backward facing 
step. The numerical results are compared to the numerical results of Ghia et al.2for a driven 
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cavity and to the experimental and numerical results of Armaly et al.3 for a backward facing 
step. The present scheme is not limited to a specific type of boundary conditions and it does 
not require any internal condition, of the type that Thomas et al.4 had to use in their pioneering 
work on the finite element calculation of convection dominated flows, using a mixed formulation. 
The present scheme was tailored for the Navier-Stokes equations and therefore simpler test 
cases such as the solution of the linear convection equation for a scalar variable were not carried 
out. 

THE NUMERICAL SCHEME 

Artificial viscosity is presently added to (2) as well as a correction term that eliminates the 
artificial viscosity where the numerical accuracy is high. The latter depends on Ω which is the 
vorticity of the flow, i.e. Ω = × V . Thus, instead of (2), a discretization of the following 
equation is considered: 

+ V· V = – P + (v + vα ) 2V + vα ×Ω (3) 

where the artificial viscosity va is assumed to be constant, or 

+ V· V = – P+ [(v + vα)( · V ] – ×[(v + vα) ×V–vα ,Ω] (4) 

if the artificial viscosity is variable. Note that (4) is identical to (3) when the artificial viscosity 
is constant, due to the following identity: 

2 V = · V ] – × ·V] (5) 
Physically, the second term on the right hand side of (4) is equal to zero because of mass 

conservation (1). Its discretization will also be equal to zero in the limit of infinite mesh refinement. 
However, in a finite discretization a computational error of this term exists and it serves to 
damp out the spurious oscillations. The rotor of Ω is introduced into the second square brackets 
on the right hand side of (4) in order to make all of the artificial viscosity terms equal to zero 
in the limit of infinite mesh refinement. However, for this term it is not immediately obvious 
that its discretization results in a non-zero contribution of the terms multiplied by vα. In order 
to demonstrate that, a finite difference discretization is used for which Ωij is given by: 

Ω i , j . = (6) 

where u and v are the velocity components in the directions of the x and y coordinates, respectively, 
and the corresponding mesh spacings are ∆x and ∆y. ui.j is the numerical approximation to 
n(i∆x, j∆y) and where vij; and Ω i , j are similarly defined. The x component of the last term on 
the right hand side of (4) is therefore given by: 

x V - Ω] s (7) 

It is obvious that the sum of the added terms [the artificial dissipation x (vα x V) plus the 
correction term — x(vαΩ)] is not zero but it is small whenever the flow is smooth with respect 
to the mesh size. A Taylor series analysis of (7) will reveal that the addition of the correction 
term turned the artificial terms from artificial viscosity terms to hyperviscosity terms, i.e. to an 
artificial dissipation which depends on the fourth derivative of u. This is done without burdening 
the programmer with additional boundary conditions. The present work seeks to suppress the 
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spurious oscillations which often are of the highest wave number resolvable on the computational 
grid. Hyperviscosity is more suitable for this purpose than artificial viscosity for it more effectively 
suppresses the higher wave number modes and has a smaller effect on the inertial modes of the 
flow field. 

The use of the auxiliary variable Ω as a computational device, is an innovation of Jiang et 
al.5,6 who introduced it in the context of their least squares finite element method. In their 
method, as in the Lax Wendroff/Taylor Galerkin method, the discrete equations are endowed 
with a significant amount of numerical dissipation although a physically wrong term is not 
added to the equations. The present scheme reaches the same end with much simpler discrete 
equations. In addition, the amount of numerical dissipation in the present scheme is not dependent 
on the size of the time step as it is in both of the other methods. The present scheme is applicable 
to viscous flows, unlike the Lax Wendroff/Taylor Galerkin method which is limited to hyperbolic 
equations. 

To summarize, instead of directly solving the Navier-Stokes equations, standard Galerkin 
integrations are performed on the following four equations: 

u,x+ v,y = 0 (8) 
v,x - u,y =Ω (9) 

+ (uu)x + (uv),y = – P,x + [(v + vα)(u,x + v,y)],x + [(v + vα)(u,y–v,x)+ vαΩ)],y (10) 

+ (uv),x + (vv ) , y = – P,y+ [(v + vα)(u,x + v,y),y–[(v + vα)(u,y– v , x ) + vαΩ)],x (11) 

where to make the discretization conservative, was added to the momentum 
conservation equation whose components are (10) and (11). For completeness, an implicit 
temporal discretization was introduced in these equations although it is used in this work only 
when a temporal relaxation is required. Here At is the time step and the superscript 0 marks 
the value of the variable at the previous time step. Note that this formulation is not the standard 
velocity-vorticity formulation. Therefore this formulation does not lead to the constraints on 
the integration procedure which are associated with the latter. 

Any application of the present scheme requires a method for determining the value of vα and 
the next two sections present such a method for the present finite elements. 

ARTIFICIAL DISSIPATION FOR A MODEL EQUATION 

Following Patankar1, a criterion for the amount of artificial dissipation required for a model 
equation (the constant coefficient convection diffusion equation) is introduced in this section. 
Subsequently the criterion is corrected to suit the Navier-Stokes equations with a correction 
term. The model equation is: 

u +v -a T = 0 (12) 

where u and v are the velocity components in the directions of the x and y coordinates, respectively, 
and a is the thermal diffusivity of the fluid, all of which are constant, and T is the temperature. 

To determine the required amount of artificial dissipation the discrete version of this model 
equation is examined. Therefore the discretization used in this work is introduced. Consider the 
triangular element shown in Figure 1. A function f(x, y) may be approximated by a linear 
interpolation over such an element, as in: 

f(x, y) = w0(x, y)f0 + w1(x, y)f1 + w2(x, y)f2 (13) 
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where fi is the value of f at the ith vertex and wi is the distance of the point (x, y) from the 
side which is opposite the ith vertex, divided by the distance of the ith vertex from the same 
side. In the right triangle of Figure 1, w1 is x/∆x, w2 is y/∆y and w0 is 1 — x/∆x – y/∆y in 
accordance to the following general rule: 

w0 + w1 + w2 = 1 (14) 
This rule may also be used to calculate w0 for any triangle where wl and w2 are given by: 

wl(x,y)= (15) 

w2(x,y) = (16) 

where xi and yi are the coordinates of the ith vertex and A is the area of the triangle, i.e. 
2A= (x1 — x0)(y2 — y0) — (x2 — x0)(y1– y0), and it is assumed that the nodes are numbered 
in the counterclockwise direction. 

A higher order interpolation is achieved by the following approximation for a given function 
9(x,y): 

g(x, y) = w0g0 + w1g1+w2g2 + 27w0w1w2 (17) 

where g0, g1 and g2 are the values of g at the vertices and gm is the value of g at the centroid 
of the element (i.e. where x = (x0 + x1 + x2)/3, y = (y0 + y1 + y2)/3 and therefore 
w0 = w1 = w2 = 1/3). This interpolation is linear on the boundaries of the element where w0w1w2 
vanishes and thus ensures the continuity of the interpolation at common boundaries of different 
elements. 

A criterion for the amount of artificial dissipation required for the model equation (12) is now 
obtained for the case where T(x,y) is approximated by (17). To obtain this criterion, the 
temperature at the internal node of the element is considered. To determine this temperature, 
a weighted integration of (18) is performed over the relevant element. The weighting function 
is w0w1w2 and the resulting equation is: 

= 0 (18) 
x=xm,y=ym 

where the derivatives of T are obtained by differentiating (17), αα is the artificial dissipation 
coefficient which is added to the equation and which is the subject of this discussion. For the 
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element of Figure 1, (18) is: 

u +v + 9 ( α + α a ) = 0 (19) 

and from this last equation we calculate that: 

Tm = - (20) 

It is readily seen that in the absence of convection Tm is the arithmetic average of the temperatures 
of the surrounding vertices. However, if the convection is significant, Tm may actually be larger 
than all of the surrounding temperatures. This unphysical behaviour is obviously a computational 
error and it is the source of the spurious oscillations whose prevention is sought. To reach this 
goal the artificial dissipation coefficient is increased to ensure that the coefficients of all of the 
temperatures on the right hand side of (20) are not negative. This is an extension to a finite 
element discretization of the basic approach of Patankar1. accordingly, the following requirement 
is imposed: 

(21) 

In order to fulfill this requirement aa is given by: 

(22) 

This choice of αa ensures that Tm is a weighted average of the three neighbouring temperatures, 
as it should be, and thus prevents Tm from exceeding their extremum value. This choice of αα 
also ensures that if the system of equations is diagonally dominant, (19) will not disrupt the 
diagonal dominance. Note that αa is about a sixth of the classic Vh/2 if h = ∆x = ∆y. 

Especially important is the special dependence of αα on the aspect ratio of the element. This 
special dependence on the elemental geometry, rather than an intuitive derivation of an expression 
for h, is one of the two main contributions of the present work. Without regard to the flow 
direction, it eliminates the artificial dissipation where either ∆x or ∆y is very small so if the 
molecular dissipation is sufficient, it is not artificially increased. This is a truly two-dimensional 
criterion for the required amount of dissipation, unlike the one-dimensional TVD criterion, or 
the results of the various Riemann solvers or even Patankar's1 criterion which assigns to each 
direction an artificial dissipation coefficient which depends only on the grid spacing in that 
direction. 

If the element is not a right triangle, the following expressions are substituted into (18): 

(23) 
x = xm,y=ym 

(24) 
x = xm,y = ym 



522 a. KANIEL ET AL. 

V2T|x=xm,y=ym = –9B2 (25) 

where B2 = ∑l½/(2A)z and li is the length of the ith side of the triangular element. as was 
previously explained, when the above expressions are substituted into (18), αa is determined such 
that the coefficients of T0, T1 and T2 are all of the same sign. The result is: 

= Pe (26) 

where Pe is an elemental Peclet number which is given by: 

Pe = (27) 

where i* is the vertex next to i in the counterclockwise direction. 
Equations (26) and (27) are the proposed criterion for the required amount of isotropic 

artificial dissipation for an element of a general orientation and geometry. The equations were 
derived by analysing the discretization which relates to the internal nodes. Therefore for 
completeness, this section concludes with a discussion of the discretization which relates to a 
vertex node. Such is the equation that results from the weighted integration of (12) over the 
structured grid segment which is shown in Figure 2: 
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where αao is given by ∫ woαα
 2T d/A/∫wo

 2T dA. The terms with the letter subscripts in (28) 
are the contribution of the internal nodes to the equation, and they are defined by expressions 
such as: 

dTm = (29) 

In (28), the nodal temperatures T3 and T6 do not appear in the dissipation terms and therefore 
increasing the artificial dissipation αa coefficient cannot make their coefficients negative, and 
therefore T0 cannot be made the average of all of the variables which appear in (28). Nevertheless, 
the equation is not prone to producing spurious oscillations. To show that, dTm and similar 
expressions are replaced using (18), (25) and (29). The result is: 

where a letter subscript of a term in square brackets indicates that this term is evaluated at the 
appropriate node. Equation (30) is clearly endowed with two kinds of dissipative terms. an 
isotropic dissipation term which is a discretization of (α + αa0) 2T and a stream-wise upwinding 
term which is a discretization of V· (40B2). The latter is the only difference between 

(30) and the discretization by linear elements of the same model equation. 

aRTIFICIaL VISCOSITY COEFFICIENT 

We now turn back from the model equation to equations (8)-(11) and search for the artificial 
viscosity coefficient for (10) and (11). Equations (8)-(ll) are discretized using a linear 
interpolation for the vorticity and the pressure and to satisfy the Babuska-Brezzi condition the 
interpolation of (17) is used for the velocity components. This admissibility criterion ensures 
that the number of unknown nodal velocity components is larger than the number of discrete 
mass conservation equations. The interpolations are also C° continuous and therefore suitable 
for use in the solution of second order equations. The artificial dissipation coefficient was derived 
by considering the discretization for the convection and diffusion terms, based on the interpolation 
of (17). However, it did not account for the pressure and the vorticity terms which appear in 
(8)-(11). In addition, the coefficients u, v and αa were held constant over each element in the 
derivation. Therefore the results of (26) and (27) are the starting point of the present empirical 
search for the artificial viscosity coefficient for (10) and (11). 

In the present section four different artificial viscosity coefficients are presented in the order 
of increasing accuracy. The first one of these four coefficients is: 

= Pe (31) 

where Pe is defined by (27), but v rather than α are used in its calculation. Pe is a function of u 
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and v which are variables. Therefore va is calculated at each integration point, using the local 
values of u and v. 

The second artificial viscosity coefficient is: 

(32) 

In this case, in regions where Ω varies slowly, the artificial dissipation coefficient is greatly 
reduced. The exponent d is an empirical constant that depends on the order of the interpolations 
and for the present case the value of 0.2 was used because with higher values the convergence 
properties of the scheme deteriorated. 

The third artificial viscosity coefficient which is examined is a function of Pe which for high 
values of Pe approaches (31) while at low values of Pe it approaches zero much faster than the 
right hand side of (31): 

(33) 

This formulation was chosen because it ensures that both va and its derivatives with respect to 
the velocity components are continuous functions of the velocities. This is a very helpful feature 
when a Newton-Raphson scheme is used to solve the discrete equations; f is an empirical 
constant and the value of 10 was used because with higher values the convergence properties 
of the scheme deteriorated. 

The fourth artificial viscosity coefficient is a combination of the last two: 

(34) 

Equation (34) decreases the value of va below the value given by (31) both where Ω varies slowly, 
and where Pe/f is small. The next section shows that this equation yields more accurate results 
than the previous formulations. 

NUMERICaL RESULTS DERIVED USING a COaRSE GRID 

The artificial viscosity coefficients of the last section were employed in the simulation of the 
flow over a backward facing step—a realistic internal flow situation which is endowed with a 
variety of boundary conditions and a complicated flow behaviour. The present results compare 
favourably with the experimental results of armaly et al.3 and are by far more accurate then the 
numerical results which armaly et al.3 calculated using TEaCH, a commercial finite difference 
code. 

The experimental results of armaly et al.3 are two-dimensional up to a Reynolds number of 
400. Their numerical results and the present ones are therefore applicable only in this range. 
To choose one out of the four artificial dissipation coefficients of the previous section, these 
coefficients are used to reproduce the flow field in this range on a coarse grid. Even beyond a 
Reynolds number of 400 and although a very coarse grid is used the present scheme produces 
physically reasonable results. This is true for all of the four artificial viscosity coefficients given 
by (31)—(34) and it is also true if the vertex nodes of the grid are reconnected in a different way. 
The results for a finer grid are presented in the next section. 

Figure 3 is a vector plot of the backward facing step problem and in it we define the 
re-attachment length x1 and the step size S. a portion of the present grid is shown in the upper 
part of the Figure. The step size S is 49/101 of the full channel width and the calculations were 
carried over a domain which extends from 3 full channel widths upstream of the expansion 
(about 6 local channel widths) to 21 channel widths downstream of the expansion. In the inflow 
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boundary, a zero tangential velocity was specified and a parabolic normal velocity distribution 
was prescribed. This is in agreement with the experimental observations of armaly et al.3. a t 
the outflow boundary, the normal derivative of the tangential velocity is set to zero. a zero 
value was also specified for the divergence of the velocity on the boundary. The pressure was 
specified at the corner node shared by the outflow boundary and the wall on the right side. 
Numerical experiments were conducted and showed that the type of the outflow conditions can 
be changed without any significant effect on the results. 

Figure 4 compares the present results for the re-attachment length with the experimental and 
numerical results of armaly et al.3. The squares mark the experimental results of armaly et al.3 

and a dotted line marks their numerical results. The triangles and the circles represent the present 
results as obtained using the artificial viscosity coefficients given by (31) and (34), respectively. 
Figure 4 clearly shows that results obtained using (34) are by far superior to the results obtained 
using (31). The results derived using the artificial viscosity coefficients given by (32) and (33) 
are not shown for aesthetic reasons. They are quite similar to each other and are in the middle 
between the shown results. Hence, the accuracy of the results clearly increases when less artificial 
viscosity is used on this coarse grid, even below the relatively little artificial viscosity given by 
(31). This indicates the importance of accurate criteria for marginal artificial dissipation. 

Below a Reynolds number of about 200 it is possible to have results without artificial viscosity 
and these are identical to the results which are shown. This validates the expectation that the 
scheme will produce accurate results wherever the grid is fine in relation to the flow properties 
(wherever the mesh spacing is small in relation to v/V). 

Besides the points which are shown in Figure 4, a few points were calculated with a similar 
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grid which was refined only in the stream-wise direction. The elements aspect ratio was thus 
varied from 1:1 to 3:1. These variations in the elements aspect ratio had no observable effect 
on the convergence rate of the scheme and the results were quite similar to those which are 
presented. In a driven cavity calculation, an aspect ratio of 30:1 was accidentally used and the 
solutions converged to physically reasonable results. This tolerance for variations in the elemental 
geometries again indicates the importance of accurate, analytically derived criteria for the required 
amount of artificial viscosity. 

The results shown in Figure 4 were computed using the grid of Figure 5a. Figure 6 compares 
the previously shown results which were computed using the grid of Figure 5a (circles) with the 
results computed using the grid of Figure 5b (triangles). For both cases the artificial viscosity 
given by (34) was used. There is a significant discrepancy between the two sets of results but 
only at and above a Reynolds number of 400. This discrepancy is an indication of the error 
emanating from the use of a coarse grid. Such a discrepancy does not appear when the above 
grids are refined. This is in agreement with the common wisdom that the mesh spacing should 
be smaller by an order of magnitude than the typical dimensions of the physical problem. For 
the backward facing step problem, the next section introduces a mesh whose spacing is smaller 
by an order of magnitude than the step height, which is equal to the width of the recirculating zone. 

as was already noted, the main objective of the present work was to achieve a non-oscillatory 
behaviour of the converged results of the iterative solution process. a byproduct of this 
suppression of spurious oscillations is that the convergence process itself is very robust. In the 
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present work, the equations were solved using a full Newton-Raphson linearization of all of 
the equations (save the term whose absolute value was raised to the d power). This linearization 
showed a large radius of convergence thus indicating that excessive spurious oscillations did 
not appear in the intermediate results of the iterative producer: Only two points required a 
temporal relaxation although a very crude initial guess of the velocity distribution was 
intentionally used for the other points (a parabolic velocity profile was imposed everywhere, 
including the points immediately upstream and immediately downstream of the step). For these 
two points the fluid was initially at rest and the boundary conditions were imposed in one time 
step. The time step was chosen so as to make the maximal Courant number in the flow field 
equal to 89. Therefore only a few time steps were required to reach the steady state. Convergence 
of the solution could not be achieved with longer time steps (i.e. with a higher Courant number). 

The two points which required temporal relaxation are marked in Figure 6 with open triangles. 
They fall in line with the other points thus indicating that the present scheme is conservative 
despite the use of the seven point integration scheme of Hammer et al.7 without an integration 
by parts of the convective fluxes. This point was also verified by calculating a few points using 
an inefficient but accurate integration scheme which was fabricated using one-dimensional 
Gauss-Legendre and Gauss-Jacobi integrations as in Reference 7. 

FINaL RESULTS 

armaly et al.3 showed an additional recirculation zone which first appears at a critical Reynolds 
number of 400. Figure 7a shows this zone and defines its characteristic lengths x2 and x3. The 
cross-stream dimension of this zone is too small to be discerned when the previous coarse grid 
is used. To make a more complete simulation of the flow field the mesh spacings in both the x 
and y dimensions were halved. This quadrupled the number of the equations and doubled the 
bandwidth of the resulting matrix and consequently the radius of convergence of the scheme 
deteriorated so much that even temporal relaxation was not helpful. a more accurate initial 
estimate of the velocity distribution had to be used and therefore the velocity distribution which 
was calculated at a Reynolds number of 550 was used as an initial estimate for the higher 
Reynolds numbers. 

Figure 7 depicts the results of the calculations which used the refined grid. Here, the refinements 
of both of the grids of Figure 5 gave practically identical results and so did the different viscosity 
coefficients of the previous analysis. In Figure 7 the numerical results of armaly et al.3 are again 
shown with dotted lines, their experimental results with squares and the present results with 
solid lines connecting shadowed circles. Figure 7 clearly shows that the present results are far 
more accurate than the numerical results which armaly et al.3 calculated using TEaCH. The 
present results regarding x1 are identical to the experimental results of armaly et al. up to a 
Reynolds number of 400, where the latter are two dimensional. This was already shown in Figure 
4 and therefore the present results (solid lines) begin at a Reynolds number of 500. at higher 
Reynolds numbers the results converge, as they should, to the average re-attachment length of 
the experiments rather than to the results which armaly et al.3 measured at the centreline of 
their experimental setup. This is shown by the starred point at a Reynolds number of 648 
(armaly et al.3 very thoroughly documented the three-dimensional effects which occurred in the 
Reynolds number range of 400 to 6600. However, they published the data necessary for the 
calculation of the average re-attachment length only for two points and only this one is within 
the range of the present calculations). The results of armaly et al.3 for x2 and x3 which appear 
in Figure 7b are qualitatively wrong and they worsen as the Reynolds number increases. The 
present results are in a fairly good agreement with the experimental results for x2 and they very 
closely resemble the experimental results for x3 up to a Reynolds number of 1200 where the 
flow becomes turbulent. Kaiktsis et al.8 compared their results for x1 to those of others up to 
a Reynolds number of 800. These results agree with those of Figure 7 and they took 30 min to 
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compute on a Cray-Y/MPl. The present scheme allows us to improve efficiency by lowering 
the resolution of the numerical grid and therefore a typical run required less than 9 min on a 
DECstation 5000/240. 

In the calculation of turbulent flows, the turbulent viscosity usually makes v large enough to 
prevent the appearance of spurious oscillations and to accordingly make va equal to zero [through 
(27)]. Since va is the subject of the present work, a turbulence model was not incorporated into 
the present program and the results for a Reynolds number above 1200, where turbulence begins, 
are presented only for completeness. 

For additional verification of the present scheme, it was also used to simulate the flow in 
a driven cavity. The results for a Reynolds number of 5000 are shown and compared to the 
numerical results of Ghia et al.2 in Figure 8. Figure 8a is a vector plot of the flow in the driven 
cavity and the boundary conditions are shown on it. Figure 8b shows the horizontal velocity 
profile in the centreline of the cavity. The squares show the results of Ghia et al.2 wherein the 
grid divided the cavity into 256 × 256 squares. The line in Figure 8b shows the present results 
wherein the grid divided the cavity into 20 × 20 rectangles, each of which was subdivided into 
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two triangular elements. The close agreement of the present results with the results of Ghia et 
al. is indeed an appropriate demonstration of the effectiveness of the proposed scheme. 

Ghia et al.2 used Rubin and Khosla's deferred correction upwinding procedure, which is an 
artificial dissipation scheme whose converged solutions are of a second-order accuracy, at the 
end of a temporal discretization. The present scheme is also of a second order accuracy but it 
does not require the use of a temporal relaxation. 

CONCLUSIONS aND DISCUSSION 

A robust and reasonably accurate artificial dissipation scheme for the Navier-Stokes equations 
was presented. The scheme consists of adding an artificial dissipation term to the equations 
along with a correction term which cancels the artificial term in the limit when the mesh size 
is zero. This ensures that with grid refinement the results of the scheme converge to a value 
which is independent of the artificial terms. Equation (7) illustrates that the correction term is 
a coarser discretization of the artificial term. The addition of such a term may perhaps be possible 
with other discretization methods and with other kinds of artificial terms. For the present 
application and for a finite mesh size, the correction term replaces the artificial viscosity terms 
with hyperviscosity terms, i.e., with an artificial dissipation which depends on the fourth 
derivatives of the velocity. Hyperviscosity more effectively suppresses the higher wave number 
modes and has a smaller effect on the inertial modes of the flow field than does artificial viscosity. 

also presented was a criterion for the required amount of artificial dissipation which correctly 
takes into account the flow velocity as well as the elemental geometry. The criterion was derived 
by considering the discretization of a model equation about the internal node of a triangular 
element. This process may perhaps be replicated for other elements and other schemes. The 
criterion was then empirically refined to suit the present scheme for the Navier-Stokes equations. 
Finally, the scheme was used to calculate the flow in a driven cavity and over a backward facing 
step. Due to the careful use of the artificial dissipation, the results are accurate even when a 
coarse grid is used. 
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